

## ***Lippia lacunosa* AS A PROMISING SOURCE OF PHENYLETHANOID GLYCOSIDES WITH INHIBITORY ACTIVITY AGAINST SARS-COV-2 PROTEASES**

**Thamirys Silva da Fonseca<sup>1\*</sup>, Beatriz Graziela Martins de Mattos<sup>2</sup>, Larissa Esteves Carvalho Constant<sup>3</sup>, Diego Allonso<sup>2,3</sup>, Simony Carvalho Mendonça<sup>2</sup>, Gilda Guimarães Leitão<sup>1,4</sup>, Suzana Guimarães Leitão<sup>1,2</sup>**

thamirysfonseca@ufrj.br

*1-Programa de Pós Graduação em Ciências Farmacêuticas, UFRJ, Brazil. 2- Faculdade de Farmácia, UFRJ Janeiro, Brazil. 3-Laboratório de Biotecnologia e Bioengenharia Estrutural, UFRJ Brazil. 4- Instituto de Pesquisas de Produtos Naturais, UFRJ, Brazil*

*Lippia lacunosa* Mart. & Schauer (Verbenaceae) is a native and endemic species of Brazil, traditionally used to treat respiratory disorders<sup>1,2</sup>. Considering that SARS-CoV-2 primarily affects the respiratory system, this species represents a promising candidate for COVID-19-related studies. Phytochemically, *L. lacunosa* is rich in phenolic metabolites, particularly phenylpropanoid glycosides (PhGs). Previous reports highlight the inhibitory potential of these compounds against viral targets such as the SARS-CoV-2 proteases 3CLpro and PLpro<sup>3</sup>, which are essential for viral replication. Thus, this study aimed to evaluate the inhibitory activity of *L. lacunosa* extracts against these proteases, followed by metabolite fractionation using Countercurrent Chromatography (CCC) and chemical characterization by LC-MS/MS. Ethanolic and ethyl acetate (EtOAc) extracts were tested at 100 µg/mL in FRET-based enzymatic assays using recombinant SARS-CoV-2 proteases (3CLpro and PLpro). The ethanolic extract inhibited over 90% of both proteases, while the EtOAc extract showed 100% inhibition of 3CLpro and 55% inhibition of PLpro. The EtOAc extract was selected for CCC fractionation, employing the biphasic solvent system ethyl acetate-butanol-water (1:0.05:1), yielding 9 fractions. LC-MS/MS combined with Feature-Based Molecular Networking (FBMN) confirmed PhGs like *m/z* 665 [M-H]<sup>-</sup> (acetyl-verbascoside), *m/z* 755 [M-H]<sup>-</sup> (forsythoside B), and other glycosylated flavonoids. Perspectives include testing all fractions against proteases and isolating the most active metabolites. Despite its extensive popular use, research on *L. lacunosa* is scarce; to our knowledge, this is one of the first investigations into its antiviral potential, especially against SARS-CoV-2, reinforcing the importance of exploring Brazilian native plants as sources of bioactive compounds. The authors thank the support from their institutions and the financial support of FAPERJ, Capes and CNPq.

**Keywords:** Verbenaceae, 3CLpro, PLpro, chemometrics, HSCCC, LC-MS/MS.

### **References**

1. LADEIRA, et al. **Journal of ethnopharmacology**, 312, 116473, pp.116473, 2023. <https://doi.org/10.1016/j.jep.2023.116473>.
2. Salimena, F.R.G.; Cardoso, P.H. **Jardim Botânico do Rio de Janeiro**. Available at: <<https://floradobrasil.jbrj.gov.br/FB26157>>. Accessed on: 26 ago. 2025
3. Gomes, et al. **Drugs Drug Candidates**, 4, 27, 2025. <https://doi.org/10.3390/ddc4020027>

